A/B Testing

Introduction

A/B tests are a fundamental tool for optimizing game features by comparing different variants and analyzing their impact on player behavior and game performance. By running A/B tests, you can make data-driven decisions to enhance monetization, engagement, and overall player satisfaction.

What is an A/B Test?

An A/B test involves dividing users into different groups, each exposed to a distinct variant of a feature. By comparing the performance metrics across these groups, you can determine which variant performs better and make informed decisions based on the results.

A/B Test Analysis

We analyze A/B test results using a self-hosted version of GrowthBook. While GrowthBook is used for analysis, Firebase is primarily used for feature flagging. Firebase allows us to launch A/B tests and create conditions for user assignment. Although Firebase’s A/B testing functionality is limited, we utilize our comprehensive analytics data to create monetization, ad, and engagement metrics and validate the results effectively.

Experiment Naming Convention

To ensure consistency and facilitate easier analysis across different games, use the following naming convention for your experiments:

{game_code}_{platform}_{test.name}

  • game_code: Three-letter game code (e.g., FNI, SBP, FMT). If the game doesn’t have a three-letter code, use the game name: game.that.doesnt.have.code.
  • platform:
    • ios for iOS
    • and for Android
    • all for tests run on both platforms simultaneously (start and end dates should be equal).
  • test.name: Any descriptive name for the test. Use dots (.) instead of spaces for multiple words.

Available Function

AbCohort

The AbCohort function assigns users to a test cohort and adds the AbCohort parameter to all subsequent events. This function should be called every session when users log in.

Critical Parameters

  • Required
    • experiment_name: The name of the experiment (e.g., abc_and_new.inter.timer).
    • experiment_cohort: The name of the variant or cohort within the experiment (e.g., aggressive, baseline, passive).

Implementation

  • Function Usage: Call the AbCohort function to assign users to a test cohort. This function will add the AbCohort parameter to all subsequent events.
  • Global Parameter: The AbCohort parameter will be included in the payload of all subsequent events after it is set.
  • Clearing Parameters: Developers must clear the ab_cohort parameter with ClearAbCohort when the test is finished to prevent stale data from affecting subsequent analyses.

Example

To illustrate the proper setup and naming convention for an A/B test, consider the following example:

Experiment Setup

An anonymous game (game code ABC) runs an experiment to evaluate the impact of different interstitial ad timings. The experiment is named abc_and_new.inter.timer, with the following variants and configurations:

Variants inter_between_time inter_start_time
baseline 
90 90
aggressive 
60 60
passive 
120 120

Each variant received different values for the experiment’s inter_between_time and inter_start_time remote configs.

✅ Correct Function Usage

Call the ab_cohort function based on the user’s allocation to the variant:

  • LionAnalytics.AbCohort("abc_and_new.inter.timer", "baseline")
  • LionAnalytics.AbCohort("abc_and_new.inter.timer", "aggressive")
  • LionAnalytics.AbCohort("abc_and_new.inter.timer", "passive")

❌ Incorrect Function Usage

Avoid calling the function with individual configuration values:

  • LionAnalytics.AbCohort("abc_and_new.inter.timer", "60")
  • LionAnalytics.AbCohort("abc_and_new.inter.timer", "90")
  • LionAnalytics.AbCohort("abc_and_new.inter.timer", "120")
  • LionAnalytics.AbCohort("abc_and_new.inter.timer", "60")
  • LionAnalytics.AbCohort("abc_and_new.inter.timer", "90")
  • LionAnalytics.AbCohort("abc_and_new.inter.timer", "120")